Avto-love.ru

Стабилизатор для мощного светодиода

Стабилизатор тока на lm317

Ток на выходе блока питания может увеличиться вследствие уменьшения сопротивления нагрузки (простой пример, короткое замыкание), также изменение тока нагрузки происходит из-за изменения напряжения питания её. Стабилизатор тока на lm317 обеспечивает стабильность тока (ограничение тока) на выходе в случаях описанных выше.

Данный стабилизатор может быть применён в схемах питания светодиодов, зарядных устройствах (ЗУ), лабораторных источников питания и так далее.

Если, к примеру, рассматривать светодиоды, то необходимо учитывать тот факт, что для них нужно ограничивать ток, а не напряжение. На кристалл можно подать 12В и он не сгорит, при условии, что ток будет ограничен до номинального (в зависимости от маркировки и типа светодиода).

Основные технические характеристики LM317

Максимальный выходной ток 1.5А

Максимальное входное напряжение 40В

Выходное напряжение от 1.2В до 37В

Более подробные характеристики и графики можно посмотреть в даташите на стабилизатор.

Схема стабилизатора тока на lm317

Плюс данного стабилизатора в том, что он является линейным и не вносит высокочастотные помехи, например как некоторые импульсные стабилизаторы. Минусом является низкий КПД (в счёт своей линейности), и поэтому происходит значительный нагрев кристалла микросхемы. Как вы уже поняли, микросхему необходимо обеспечить хорошим радиатором.

За величину тока стабилизации (ограничения) отвечает резистор R1. С помощью данного резистора можно выставить ток стабилизации, например 100мА, тогда даже при коротком замыкании на выходе схемы будет протекать ток, равный 100мА.

Сопротивление резистора R1 рассчитывается по формуле:

R1=1,2/Iнагрузки

Изначально необходимо определиться с величиной тока стабилизации. Например, мне необходимо ограничить ток потребления светодиодов равный 100мА. Тогда,

R1=1,2/0,1A=12 Ом.

То есть, для ограничения тока 0,1A необходимо установить резистор R1=12 Ом. Проверим на железе… Для проверки собрал схему на макетной плате. Резистор на 12 Ом искать было лень, зацепил в параллель два по 22 Ома (были под рукой).

Выставил напряжение холостого хода, равное 12В (можно выставить любое). После чего, я замкнул выход на землю, и стабилизатор LM317 ограничил ток 0,1А. Расчеты подтвердились.

При увеличении или уменьшении напряжения ток остается стабильным.

Резистор можно припаять на выводы микросхемы, но не стоит забывать, что через резистор протекает весь ток нагрузки, поэтому при больших токах нужен резистор повышенной мощности.

Если использовать данный стабилизатор тока на LM317 в лабораторном блоке питания, то необходимо устанавливать переменный резистор проволочного типа, простой переменный резистор не выдержит токи нагрузки протекающие через него.

Читать еще:  Сколько масла заливать в редуктор ваз 2106

Для ленивых представляю таблицу значений резистора R1 в зависимости от нужного тока стабилизации.

Ток R1 (стандарт)
0.025 51 Ом
0.05 24 Ом
0.075 16 Ом
0.1 13 Ом
0.15 8.2 Ом
0.2 6.2 Ом
0.25 5.1 Ом
0.3 4.3 Ом
0.35 3.6 Ом
0.4 3 Ома
0.45 2.7 Ома
0.5 2.4 Ома
0.55 2.2 Ома
0.6 2 Ома
0.65 2 Ома
0.7 1.8 Ома
0.75 1.6 Ома
0.8 1.6 Ома
0.85 1.5 Ома
0.9 1.3 Ома
0.95 1.3 Ома
1 1.3 Ома

Таким образом, применив галетный переключатель и несколько резисторов, можно собрать схему регулируемого стабилизатора тока с фиксированными значениями.

Стабилизатор тока для светодиодов

Светодиод – полупроводниковый прибор с нелинейной вольтамперной характеристикой. При незначительном изменении напряжения, ток через него может изменяться в разы. Поэтому для обеспечения надлежащего питания светодиодов требуется стабилизатор тока.

Стабилизатор тока – устройство, которое поддерживает постоянный ток в нагрузке, независимо от падения напряжения на ней. По принципу действия он может быть линейным или импульсным. Линейный стабилизатор регулирует выходные параметры за счет распределения мощности между нагрузкой и своим внутренним сопротивлением, поэтому он менее эффективен, чем импульсный. Последний же использует принцип широтно-импульсной модуляции и отдает в нагрузку ровно столько мощности, сколько нужно. При этом КПД может превышать 90%. Однако импульсный стабилизатор имеет более сложную схему и более высокую стоимость.

Рассмотрим оба варианта

Воспользуемся микросхемой LM317. На ее основе может быть построена схема линейного стабилизатора тока. Микросхема LM317 имеет три вывода и выпускается в стандартных корпусах ТО-220, ТО-263, SOT-223 и ТО-252 (D 2 PAK). Значение дифференциального напряжения между выводами Vout­ и Vin не должно превышать 40 В.

Простейшая схема линейного источника тока на LM317 изображена на рисунке 1.

Рисунок 1 – Линейный стабилизатор на LM317

Принцип работы заключается в том, что микросхема LM317 поддерживает разность потенциалов между выходом Vout и выводом Adjust на уровне 1,25 В. Получается, что, пренебрегая IAdj (его значение по data sheet не более 100 мкА), значение силы тока через нагрузку, вне зависимости от напряжения на ней, будет определяться как 1,25/R1.

Входное напряжение всегда должно быть по крайней мере на 3 В больше выходного Vout.

Читать еще:  Оптимальная резина для нивы

Корпус LM317 должен быть закреплен на радиатор, так как даже при 0,7 А и минимальной разнице входного и выходного напряжения, на микросхеме будет рассеиваться мощность 2,1 Вт.

Схема на LM317 очень проста, но очень неэффективна, и на практике может быть применена только для малых токов, в случае, когда по каким-то причинам нельзя использовать импульсный стабилизатор.

Наиболее простой и недорогой импульсный стабилизатор можно построить на основе микросхемы HV9910. Схема приведена на рисунке 2.

Рисунок 2 – Схема импульсного источника тока на HV9910

Схема работает следующим образом:

микросхема HV9910 при подаче питания открывает ключ Q1, через светодиоды и дроссель L1 и резистор Rcs начинает протекать ток. Когда падение напряжения на Rcs достигает значения 250 мВ, микросхема закрывает ключ и ток под действием энергии запасенной в дросселе начинает течь через диод D1. Далее процесс повторяется циклически, управляемый внутренним генератором, частота которого задается резистором RT.

Схема довольно проста и надежна, работает при значениях входного напряжения от 8 до 450 В. Кроме того, ее можно приспособить к работе от сети, поставив на входе простейший выпрямитель (диодный мост и накопительный конденсатор). Вся необходимая информация для расчета номиналов используемых компонентов приведена в data sheet производителя.

Существует еще более простая схема питания светодиодов – для этих целей можно использовать полностью интегральный стабилизатор тока (или драйвер). Примером такого драйвера может служить микросхема LDD-XXXH фирмы MeanWell. Под ХХХ зашифровано значение выходного тока, например, исполнение на 350 мА будет иметь наименование LDD-350H. Никаких дополнительных компонентов не требуется – драйвер подключается напрямую к светодиодам.

Входное напряжение от 8 до 56 В, КПД до 97%!

Рисунок 3 – Интегральный драйвер для светодиодов

Стабилизатор для светодиодов в авто своими руками — схема

  1. Необходимые детали
  2. Схема
  3. Сборка своими руками
  4. Видео

Почти все автомобилисты знакомы с такой проблемой, как быстрый выход из строя светодиодных ламп. Которые зачастую ставятся в габаритные огни, дневные ходовые огни (ДХО) или в другие фонари. Как правило эти светодиодные лампы имеют малую мощность и ток потребления, чем, собственно говоря, и обусловлен их выбор.
Сам по себе светодиод запросто служит в оптимальных условиях более 50000 часов, но в автомобиле, особенно в отечественном, его не хватает порой и на месяц. Сначала светодиод начинает мерцать, а затем и вообще перегорает.

Читать еще:  Часы измеряющие давление отзывы

Почему это происходит? Дело в том, что производитель ламп пишет маркировку 12V. Это оптимальное напряжение, при котором светодиоды в лампе работают почти на максимуме. И если подать на эту лампу 12В, то она прослужит на максимальной яркости очень долгое время.

Так почему же она перегорает в автомобиле? Изначально напряжение бортовой сети автомобиля — 12,6 В. Уже видно завышение от 12. А напряжение сети заведенного автомобиля может доходить до 14,5 В. Добавим ко всему этому различные скачки от переключения мощных ламп дальнего или ближнего света, мощные импульсы по напряжению и магнитные наводки при пуске двигателя от стартера. И получим не самую лучшую сеть для питания светодиодов, которые в отличии от ламп накаливания, очень чувствительны ко всем перепадам.

  • Читайте также, как сделать воздушный компрессор своими руками

Так как зачастую в простеньких китайских лампах нет никаких ограничивающих элементов, кроме резистора — лампа выходит из строя от перенапряжения. Большая часть из них не служит и года. Решение этой проблемы кроется в установке простого стабилизатора напряжения для светодиодов. Давайте разбираться, как его сделать своими руками.

Сборка стабилизатора для светодиодов в авто — необходимые детали

Этот проект абсолютно несложный, его с легкостью сможет повторить любой автомобилист.

Все что понадобится:

  • микросхема — линейный стабилизатор напряжения L7812;
  • пару клемм;
  • пара конденсаторов 100n;
  • кусок текстолита для платы;
  • термоусадочная трубка.

Вроде все.

Схема стабилизатора напряжения для светодиодов

Схема взята из даташита на микросхему L7805.

Все просто — слева вход, справа — выход. Такой стабилизатор может выдержать до 1,5А нагрузки при условии, что будет установлен на радиатор. Естественно для маленьких лампочек никакого радиатора не нужно.

Сборка стабилизатора 12В для светодиодов в авто своими руками

Все что нужно это вырезать из текстолита нужный кусочек. Травить дорожки не нужно — можно вырезать простые линии обычной отверткой.

  • Схема зарядного устройства для аккумулятора авто

Припаиваем все элементы и готово. В настройке не нуждается.

В роли корпуса служит термообдувка.

Плюс схемы ещё в том, что в роли радиатора модно использовать кузов автомобиля, так как центральный вывод корпуса микросхемы соединен с минусом.

На этом все, светодиоды больше не выгорают.

Смотрите видео сборки стабилизатора напряжения для светодиодов в авто:

Ссылка на основную публикацию
Adblock
detector