Avto-love.ru

Ремонт трехфазного асинхронного двигателя

Проверка и ремонт асинхронных электродвигателей

В предыдущей статье Я рассказывал о том, как проверить, найти и устранить неисправности в коллекторных электродвигателях, которые отличаются тем, что у них есть щеточно-коллекторный узел. Сейчас Я расскажу как проверить, найти неисправность и отремонтировать асинхронный электродвигатель, который является самым надежным и простым в изготовлении из всех типов моторов. Они реже встречается в быту (в компрессоре холодильника или в стиральной машине), но за то часто в гараже или мастерской: в станках, компрессорах и т. п.

Починить или проверить своими руками асинхронный электродвигатель будет не тяжело большинству людей. Наиболее частой поломкой у асинхронных двигателей является износ подшипников, реже обрыв или отсыревание обмоток.

Большинство неисправностей можно выявить при внешнем осмотре.

Рекомендую периодически, что бы продлить срок службы- проверять у электродвигателей: состояние подшипников, чистить его внутри от мусора и пыли, и особенно вентиляционные отверстия.

Перед подключением или если долго не использовался мотор, необходимо у него проверить сопротивление изоляции мегомметром. Или если нет знакомого электрика с мегомметром, тогда не помешает в профилактических целях его разобрать и посушить обмотки статора несколько суток.

Прежде чем приступать к ремонту электродвигателя, необходимо проверить наличие напряжения и исправность магнитных пускателей, теплового реле, кабелей подключения и конденсатора, при его наличии в схеме.

Проверка электродвигателя внешним осмотром

Полноценный осмотр можно провести только после разборки электродвигателя, но сразу не спешите разбирать.

Все работы выполняются только после отключения электропитания, проверки его отсутствия на электродвигателе и принятия мер по предотвращению его самопроизвольного или ошибочного включения. Если устройство включается в розетку, тогда просто достаточно достать вилку из нее.

Если в схеме есть конденсаторы, тогда их выводы необходимо разрядить.

Проверьте перед началом разборки:

  1. Люфт в подшипниках. Как проверить и заменить подшипники читайте в этой статье.
  2. Проверьте покрытие краски на корпусе. Выгоревшая или отлущиваяся местами краска свидетельствует о нагревании двигателя в этих местах. Особенно обратите внимание на места расположения подшипников.
  3. Проверьте лапы крепления электродвигателя и вал вместе его соединения с механизмом. Трещины или отломанные лапы необходимо приварить.

После разборки по этой инструкции необходимо проверить:

  1. Смазку в подшипниках. Или заменить их при износе.
  2. Отсутствие касаний при вращении ротора в статоре. Если есть потертости, значит изношены подшипники. Если сильно стерт ротор или есть значительные сколы (чаще всего в районе крыльчатки), его необходимо будет заменить, потому что будет нарушена балансировка вала.
  3. Осматриваем короткозамкнутый ротор на отсутствие повреждений, как правило это оплавления или почернения в местах расположения стержней, соединенных с контактными кольцами. Поврежденный ротор ремонту не подлежит и его необходимо заменить.
  4. Далее необходимо осмотреть обмотки статора электродвигателя в первую очередь на целостность, т. е. не должно быть оторванных или торчащих проводов. Затем внимательно смотрим и ищем места почернения проводов. Исправные провода темно-красного цвета. Если же выгорает электроизоляционный лак, то провода в этих местах чернеют.

Может выгореть как часть обмотки и возникнет межвитковое замыкание (на картинке слева), так и вся обмотка (на правой картинке). Несмотря на то, что в первом случае двигатель будет работать и перегреваться, все равно необходимо в любом случае перемотать заново обмотки.

Как прозвонить асинхронный электродвигатель

Если при внешнем осмотре ничего не выявлено, тогда необходимо продолжить проверку при помощи электротехнический измерений.

Как прозвонить электродвигатель мультиметром

Самым распространенным в домашнем хозяйстве электроизмерительным прибором является мультиметр. При его помощи можно прозвонить на целостность обмотки и на отсутствия пробоя на корпус.

В двигателях на 220 Вольт. Необходимо прозвонить пусковую и рабочую обмотки. При чем у пусковой сопротивление будет 1.5 раза больше, чем у рабочей. У некоторых электромоторов пусковая и рабочая обмотка будет иметь общий третий вывод. Подробнее об этом читайте здесь.

Например, у мотора от старой стиральной машины есть три вывода. Самое большое сопротивление будет между двумя точками, включающей в себя 2 обмотки, например 50 Ом. Если взять оставшейся третий конец, то это и будет общий конец. Если замерить между ним и 2 концом пусковой обмотки- получите величину около 30-35 Ом, а если между ним и 2 концом рабочей- около 15 Ом.

В двигателях на 380 Вольт, подключенных по схеме звезда или треугольник необходимо будет разобрать схему и прозвонить отдельно каждую из трех обмоток. У них сопротивление должно быть одинаковым от 2 до 15 Ом с отклонениями не более 5 процентов.

Читать еще:  Установка подогревателя двигателя 220в на ваз 2114

Обязательно необходимо прозвонить все обмотки между собой и на корпус. Если сопротивление не велико до бесконечности, значит есть пробой обмоток между собой или на корпус. Такие двигатели необходимо сдать в перемотку обмоток.

Как проверить сопротивление изоляции обмоток электродвигателя

К сожалению, мультиметром не проверить величину сопротивления изоляции обмоток электромотора для этого необходим мегомметр на 1000 Вольт с отдельным источником питания. Прибор дорогой, но он есть у каждого электрика на работе, которому приходится подключать или ремонтировать электродвигатели.

При измерении один провод от мегомметра присоединяют к корпусу в неокрашенном месте, а второй по очереди к каждому выводу обмотки. После этого измерьте сопротивление изоляции между всеми обмотками. При величине менее 0.5 Мегома- двигатель необходимо просушить.

Будьте внимательны, во избежание поражения электрическим током не прикасайтесь к измерительным зажимам во время проведения измерений.

Все измерения проводятся только на обесточенном оборудовании и по продолжительности не менее 2-3 минут.

Как найти межвитковое замыкание

Наиболее сложным является поиск межвиткового замыкания, при котором замыкается между собой лишь часть витков одной обмотки. Не всегда выявляется при внешнем осмотре, поэтому для этих целей применяется для двигателей на 380 Вольт- измеритель индуктивности. У всех трех обмоток должно быть одинаковое значение. При межвитковом замыкании у поврежденной обмотки индуктивность будет минимальной.

Когда Я был на практике 16 лет назад на заводе, электрики для поиска межвитковых замыканий у асинхронного мотора мощностью 10 Киловатт использовали шарик из подшипника диаметром около 10 миллиметров. Они вынимали ротор и подключали 3 фазы через 3 понижающих трансформатора на обмотки статора. Если все в порядке шарик движется по кругу статора, а при наличии межвиткового замыкания он примагничивается к месту его возникновения. Проверка должна быть кратковременной и будьте аккуратны шарик может вылететь!

Я уже давно работаю электриком и проверяю на межвитковое замыкание, если только двигатель на 380 В начинает сильно греться после 15-30 минут работы. Но перед разборкой, на включенном моторе проверяю величину потребляемого им тока на всех трех фазах. Она должна быть одинаковой с небольшой поправкой на погрешности измерений.

Асинхронный двигатель – принцип работы и устройство

8 марта 1889 года величайший русский учёный и инженер Михаил Осипович Доливо-Добровольский изобрёл трёхфазный асинхронный двигатель с короткозамкнутым ротором.

Современные трёхфазные асинхронные двигатели являются преобразователями электрической энергии в механическую. Благодаря своей простоте, низкой стоимости и высокой надёжности асинхронные двигатели получили широкое применение. Они присутствуют повсюду, это самый распространённый тип двигателей, их выпускается 90% от общего числа двигателей в мире. Асинхронный электродвигатель поистине совершил технический переворот во всей мировой промышленности.

Огромная популярность асинхронных двигателей связана с простотой их эксплуатации, дешивизной и надежностью.

Асинхронный двигательэто асинхронная машина, предназначенная для преобразования электрической энергии переменного тока в механическую энергию. Само слово “асинхронный” означает не одновременный. При этом имеется ввиду, что у асинхронных двигателей частота вращения магнитного поля статора всегда больше частоты вращения ротора. Работают асинхронные двигатели, как понятно из определения, от сети переменного тока.

Устройство

На рисунке: 1 – вал, 2,6 – подшипники, 3,8 – подшипниковые щиты, 4 – лапы, 5 – кожух вентилятора, 7 – крыльчатка вентилятора, 9 – короткозамкнутый ротор, 10 – статор, 11 – коробка выводов.

Основными частями асинхронного двигателя являются статор (10) и ротор (9).

Статор имеет цилиндрическую форму, и собирается из листов стали. В пазах сердечника статора уложены обмотки статора, которые выполнены из обмоточного провода. Оси обмоток сдвинуты в пространстве относительно друг друга на угол 120°. В зависимости от подаваемого напряжения концы обмоток соединяются треугольником или звездой.

Роторы асинхронного двигателя бывают двух видов: короткозамкнутый и фазный ротор.

Короткозамкнутый ротор представляет собой сердечник, набранный из листов стали. В пазы этого сердечника заливается расплавленный алюминий, в результате чего образуются стержни, которые замыкаются накоротко торцевыми кольцами. Эта конструкция называется “беличьей клеткой“. В двигателях большой мощности вместо алюминия может применяться медь. Беличья клетка представляет собой короткозамкнутую обмотку ротора, откуда собственно название.

Фазный ротор имеет трёхфазную обмотку, которая практически не отличается от обмотки статора. В большинстве случаев концы обмоток фазного ротора соединяются в звезду, а свободные концы подводятся к контактным кольцам. С помощью щёток, которые подключены к кольцам, в цепь обмотки ротора можно вводить добавочный резистор. Это нужно для того, чтобы можно было изменять активное сопротивление в цепи ротора, потому что это способствует уменьшению больших пусковых токов. Подробнее о фазном роторе можно прочитать в статье – асинхронный двигатель с фазным ротором.

Читать еще:  После замены подушки двигателя появилась вибрация

Принцип работы

При подаче к обмотке статора напряжения, в каждой фазе создаётся магнитный поток, который изменяется с частотой подаваемого напряжения. Эти магнитные потоки сдвинуты относительно друг друга на 120°, как во времени, так и в пространстве. Результирующий магнитный поток оказывается при этом вращающимся.

Результирующий магнитный поток статора вращается и тем самым создаёт в проводниках ротора ЭДС. Так как обмотка ротора, имеет замкнутую электрическую цепь, в ней возникает ток, который в свою очередь взаимодействуя с магнитным потоком статора, создаёт пусковой момент двигателя, стремящийся повернуть ротор в направлении вращения магнитного поля статора. Когда он достигает значения, тормозного момента ротора, а затем превышает его, ротор начинает вращаться. При этом возникает так называемое скольжение.

Скольжение s – это величина, которая показывает, насколько синхронная частота n1 магнитного поля статора больше, чем частота вращения ротора n2, в процентном соотношении.

Скольжение это крайне важная величина. В начальный момент времени она равна единице, но по мере возрастания частоты вращения n2 ротора относительная разность частот n1-n2 становится меньше, вследствие чего уменьшаются ЭДС и ток в проводниках ротора, что влечёт за собой уменьшение вращающего момента. В режиме холостого хода, когда двигатель работает без нагрузки на валу, скольжение минимально, но с увеличением статического момента, оно возрастает до величины sкр – критического скольжения. Если двигатель превысит это значение, то может произойти так называемое опрокидывание двигателя, и привести в последствии к его нестабильной работе. Значения скольжения лежит в диапазоне от 0 до 1, для асинхронных двигателей общего назначения оно составляет в номинальном режиме – 1 – 8 %.

Как только наступит равновесие между электромагнитным моментом, вызывающим вращение ротора и тормозным моментом создаваемым нагрузкой на валу двигателя процессы изменения величин прекратятся.

Выходит, что принцип работы асинхронного двигателя заключается во взаимодействии вращающегося магнитного поля статора и токов, которые наводятся этим магнитным полем в роторе. Причём вращающий момент может возникнуть только в том случае, если существует разность частот вращения магнитных полей.

Ремонт трехфазного асинхронного двигателя

Приводится обоснование необходимости периодического ТО АД. Предлагается приблизительный перечень работ по ТО АД

Асинхронные электродвигатели отличаются очень высокой надежностью, высокой бесперебойностью своей работы (при соблюдении допустимой продолжительности включения).

Однако, это не означает, что «асинхронники» являются вечными. Поэтому на каждом предприятии рекомендуется составить график проведения технического обслуживания асинхронных двигателей. Перечень работ при ТО асинхронных двигателей может быть таким:

1. Внешний осмотр и оценка состояния механической части

Техническое обслуживание асинхронного электродвигателя следует начинать с его подробного внешнего осмотра. В первую очередь определяется наличие очевидных неисправностей. Корпус двигателя следует очистить от грязи и пыли при помощи стальной щетки. Он не должен иметь сколов и повреждений. Из-за вибраций и динамических нагрузок, а также при неровностях и дефектах монтажной площадки, нередко случается, что одна из монтажных «лап» откалывается. Такой двигатель выбраковывается и не допускается к дальнейшей эксплуатации.

В обязательном порядке следует проверить наличие крышки клеммной коробки, а также крышки, закрывающей роторные выводы у двигателей с фазным ротором. Эти крышки должны закрываться плотно, без зазоров. Их смятия и повреждения не допускаются.

Каждый асинхронный электродвигатель должен иметь на корпусе шильдик – табличку с информацией о номинальных параметрах. Необходимо контролировать читаемость всех надписей на шильдике и, при необходимости, восстанавливать их, чтобы не иметь в хозяйстве «неопознанных» электродвигателей.

При выполнении технического обслуживания двигатель необходимо отсоединить от трансмиссии: снять приводной ремень, цепь или полумуфту. После этого следует провернуть вал вручную. Он должен проворачиваться с усилием, обусловленным только инерцией ротора, посторонние звуки, скрежет и хруст должны отсутствовать.

Следует вскрыть кожух, скрывающий крыльчатку двигателя (при закрытом исполнении). Крыльчатка не должна болтаться, иметь люфты в любом направлении, стопорный винт должен быть затянут.

Вал двигателя не должен перемещаться в радиальном и осевом направлениях, а звездочка или шкив на валу должны быть закреплены надежно и не болтаться. Все болтовые соединения должны быть протянуты, а резьба не должна быть сорвана. Дефектные детали и элементы крепежа подлежат замене.

Читать еще:  Ока с японским двигателем

Далее необходимо вскрыть крышки подшипниковых узлов. Состояние подшипников и подшипниковых гнезд определяется визуально. Исключаются трещины, сколы колец подшипника, неправильное его положение относительно вала (перекос). Перед закрытием подшипниковый узел набивается смазкой (маслом или специальной консистентной смазкой). Контроль наличия и состояния смазки в подшипниковых узлах вообще рекомендуется производить ежесменно.

2. Внешний осмотр и оценка состояния электрической части

Для оценки состояния статорных выводов и токосъемного устройства ротора, крышки двигателя вскрываются. Изоляция статорных выводов должна иметь быть целой, без трещин и повреждений, в противном случае изоляцию необходимо восстановить при помощи изоленты и киперной ленты. Клеммная колодка, при ее наличии, не должна быть оплавлена или повреждена – в противном случае она подлежит замене.

Наконечники статорных выводов могут быть окислены или иметь на поверхности нагар – это признак плохого электрического контакта. При наличии подобных дефектов наконечники следует зачистить до металла и вновь соединить обмотки по необходимой схеме. Полость клеммной коробки двигателя следует аккуратно очистить от пыли и грязи.

Остаточная величина токосъемных роторных щеток двигателей с фазным ротором должна быть не менее 4 мм. Их контактная поверхность должна быть ровной и плотно прилегать к токосъемному кольцу. Сколы и трещины на щетках исключаются. Дефектные щетки подлежат замене. Перед установкой они шлифуются под поверхность токосъемного кольца при помощи стеклянной бумаги.

Токосъемные кольца следует очистить от пыли и грязи при помощи ветоши, смоченной в керосине. Задиры, повреждения токосъемных колец не допускаются. Причиной возникновения таких дефектов может быть не замеченный вовремя предельный износ щеток.

Напоследок необходимо проконтролировать состояние заземляющего проводника электродвигателя. Его жилы должны быть целыми, без повреждений, а болтовые крепления наконечников должны быть надежно затянуты.

3. Измерения и испытания

На данном этапе при помощи мегомметра проверяется сопротивление изоляции статорных обмоток, а для двигателей с фазным ротором – и обмоток ротора. Электрическое сопротивление статорных обмоток проверяется относительно корпуса двигателя, а сопротивление обмоток ротора – относительно рабочего вала. При рабочей температуре нормальным считается сопротивление изоляции обмоток 0,5 Мом или более. На практике же сопротивление изоляции исправных электродвигателей исчисляется десятками Мом.

Далее необходимо измерить сопротивление статорных обмоток постоянному току. Сопротивления пофазно должны быть одинаковыми, это косвенно свидетельствует об отсутствии межвитковых коротких замыканий. Для этого измерения лучше пользоваться не мультиметром, а прибором с более высоким классом точности, поскольку сопротивление обмоток на постоянном токе исчисляется долями Ом.

После произведения перечисленных измерений двигатель подключается к сети, его крышки закрываются. Двигатель включается в работу на холостом ходу. Проверяется отсутствие вибраций, биений рабочего вала, пофазно измеряются и соотносятся друг с другом токи холостого хода. Рукой проверяется наличие/отсутствие нагрева корпуса двигателя в течение как минимум 15 минут работы.

Некоторое повышение температуры является нормой, и допустимая его степень определяется классом стойкости изоляции. Но, например, повышение температуры корпуса до 100°C явно свидетельствует о каких-либо проблемах в работе электродвигателя.

Только после этого двигатель соединяется с трансмиссией рабочего механизма и включается в работу под нагрузкой. Техническое обслуживание можно считать выполненным.

4. Общие замечания

Основная цель технического обслуживания – профилактика и своевременное обнаружение неисправностей. Если обнаруженные дефекты не являются крупными и серьезными, принимается решение об их устранении на месте в ходе ТО. Для произведения крупного и ответственного ремонта двигатели доставляются в специально оборудованный электроцех.

В систематическом техническом обслуживании нуждаются не только асинхронные электродвигатели. Но именно в их отношении такой необходимостью часто пренебрегают.

Однако отсутствие своевременного ТО чревато для двигателя серьезными поломками и неисправностями, устранение которых может занять много времени и сил. Могут возникнуть механические повреждения железа статора, обмотка двигателя может прийти в полную негодность, может случится даже возгорание в коробке или в рабочей полости двигателя.

Перечень работ при ТО по согласованию с главным инженером или главным энергетиком предприятия не обязательно должен быть именно таким, как предложено в этой статье. Решающее значение имеют условия работы: влажность окружающего воздуха, температура, пыльность помещения и, наконец, интенсивность работы. Те же факторы следует принимать во внимание и при определении периодичности проведения ТО асинхронных двигателей.

Ссылка на основную публикацию
Adblock
detector